A Theory of Optimal Inheritance Taxation

Thomas Piketty and Emmanuel Saez (Econometrica 2013)

Presentation by Johannes Fleck

Macro Public Finance II –
 D. Sachs, EUI, Spring 2016

May 2, 2016

MOTIVATION: research question and approach

What is the optimal tax on bequests?

- Dynastic interpretation of Chamley-Judd: Zero inheritance tax
- ► Two period models (parents work and consume, children only consume)
 - with earnings tax: inheritance tax useless to increase welfare [Atkinson and Stiglitz, 1976]
 - accounting children utility: subsidy on bequests increases welfare [Farhi and Werning, 2010]
- ▶ Piketty and Saez, 2013 (p. 1852)
 " (...) different yet difficult to test assumptions for bequest behavior lead to different formulas and magnitudes."
 - Keep analysis general regarding bequest preferences
 - Derive general but estimable deterministic tax formula

PAPER: structure

- 1. Introduction
- 2. Optimal inheritance tax with bequests in the utility: $V_t = u(c_t, l_t, b_t)$
- 3. Optimal inheritance tax in the dynastic (Barro-Becker) model: $V_t = u(c_t, l_t) + \delta V_{t+1}$
- 4. Numerical calibration of the optimal tax
- 5. Conclusion and extensions
- 6. Appendix (proofs)
- 7. Supplement (more proofs and calibrations)
- ▶ Difference in optimal inheritance tax between 2 and 3 is minor
- ▶ I will focus on 2 and 4 (and briefly comment on 3)

MODEL: bequests in the utility

- ▶ There are 0, 1, ..., t, ... generations, each with measure one
- ▶ Problem of individual it (of dynasty i, living in t) is

$$\max_{c_{ti},l_{ti},b_{t+1i} \ge 0} V^{ti}(c_{ti},l_{ti},Rb_{t+1i}(1-\tau_{Bt+1}))$$
s.t. $c_{ti}+b_{t+1i}=Rb_{ti}(1-\tau_{Bt})+w_{ti}l_{ti}(1-\tau_{Lt})+E_{t}$

where

- $\underline{b} = Rb_{t+1i}(1 \tau_{Bt+1})$ is net-of-tax capitalized bequest
- government chooses (E, τ_L, τ_B) to satisfy $E_t = \tau_{Bt}Rb_t + \tau_{Lt}y_{Lt}$
- $ightharpoonup b_t$ is aggregate bequests received (for generation t)
- y_{Lt} is aggregate labor income (for generation t)
- $ightharpoonup b_{0i}$ and R are exogenously given
- w_{ti} and $V^{ti}(\underbrace{c, l, \underline{b}}_{+})$ are from arbitrary ergodic distribution

▶ FOC
$$[b_{t+1}]$$
 $\frac{V_{c}^{ti}}{V_{\underline{b}}^{ti}} = R(1 - \tau_{Bt+1})$ if $b_{t+1i} > 0$

MODEL: steady state equilibrium

With

- ergodicity condition for w_{ti} and V^{ti}
- constant taxes and grants

the economy converges to a unique ergodic ss equilibrium which

- features utility maximizing hhs
- ▶ is independent of b_{0i} , y_{L0i}
- ▶ is characterized by a distribution of b_{ti} , y_{Lti}
- permits heterogenous random parental preferences and abilities
- ▶ The proof (not very intuitive) is in the WP version of 2012
- ▶ There, some elements differ (e.g. wealth is argument of V)

MODEL: welfare function

Long-run ss social welfare function (SWF)

$$\max_{\tau_{L},\tau_{B}} \int_{i} \omega_{ti} V^{ti} \left(Rb_{ti} (1 - \tau_{B}) + w_{ti} l_{ti} (1 - \tau_{L}) + E - b_{t+1i}, l_{ti}, Rb_{t+1i} (1 - \tau_{B}) \right)$$
s.t. $E = \tau_{B} Rb_{t} + \tau_{L} y_{Lt}$

where

- $\omega_{ti} \geq 0$ are Pareto weights
- ▶ taking E as fixed, τ_L and τ_B are linked to meet the gov bc
- SWF is constant in ergodic equilibrium
- SWF allows accounting for social preferences about distributions

MODEL: deriving the optimal inheritance tax

▶ Define ti's social marginal welfare weight (with $\int_i g_{ti} = 1$)

$$g_{ti} = \frac{\omega_{ti} V_c^{ti}}{\int_i \omega_{tj} V_c^{tj}}$$

Capture behavioral response by long-run tax elasticities (given E)

$$e_B = rac{rac{db_t}{b_t}}{rac{d(1- au_B)}{1- au_B}} \qquad e_L = rac{rac{dy_{Lt}}{y_{Lt}}}{rac{d(1- au_L)}{1- au_L}}$$

Define distributional parameters

$$\overline{b}^{rec} = \frac{\int_{i} g_{ti} b_{ti}}{b_{t}} \qquad \overline{b}^{left} = \frac{\int_{i} g_{ti} b_{t+1i}}{b_{t+1}} \qquad \overline{y}_{L} = \frac{\int_{i} g_{ti} y_{Lti}}{y_{Lt}}$$

MODEL: deriving the optimal inheritance tax - cont'd

- ▶ Which \(\tau_B\) maximizes SWF?
 - take τ_L and dE = 0 as given and consider $d\tau_B > 0$
 - ▶ budget balance $Rb_t d\tau_B + \tau_B Rdb_t + y_{Lt} d\tau_{Lt} + \tau_{Lt} dy_{Lt} = 0$
 - using elasticities $Rb_t d\tau_B (1 e_B \frac{\tau_b}{1 \tau_B}) = -d\tau_L y_{Lt} (1 e_L \frac{\tau_L}{1 \tau_L})$
- ▶ Effect of $d\tau_B > 0, d\tau_L < 0$ on SWF?
 - use EV (hh variables are optimal)
 - know that at optimal τ_B : dSWF = 0
 - use FOC of hh problem
 - use above elasticity representation to write $d au_L$
 - define
 - ▶ bequest-received elasticity $e_{Bti} = \frac{db_{ti}}{b_{ti}} / \frac{d(1-\tau_B)}{(1-\tau_B)}$ (to write db_{ti})
 - e_B as bequest weighted population average of e_{Bti}

MODEL: deriving the optimal inheritance tax - cont'd

▶ Obtain SWF expression for joint effects of $d\tau_B$, $d\tau_L$ on indvidual ti

$$0 = \int_{i} g_{ti} \left(-d\tau_{B}Rb_{ti}(1 + e_{Bti}) + \frac{\frac{1 - e_{B}\tau_{B}}{1 - \tau_{B}}}{\frac{1 - e_{L}\tau_{L}}{1 - \tau_{L}}} \frac{y_{Lti}}{y_{Lt}}Rb_{t}d\tau_{B} - \frac{d\tau_{B}}{1 - \tau_{B}}b_{t+1i} \right)$$

- bequests received
- + reduced labor income tax
- bequest left
- Eliminate integral and individual variables
 - use distributional parameters
 - ightharpoonup correspondingly, define \hat{e}_B as average e_{Bti} weighted by $g_{ti}b_{ti}$

$$0 = -\overline{b}^{rec}(1+\hat{e}_B) + \frac{\frac{1-e_B\tau_B}{1-\tau_B}}{\frac{1-e_L\tau_L}{1-\tau_L}}\overline{y}_L - \frac{\overline{b}^{left}}{R(1-\tau_B)}$$

▶ solving for τ_B ...

MODEL: the optimal inheritance tax nests special cases

$$\tau_{B} = \frac{1 - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right) \left(\frac{\overline{b}^{rec}}{\overline{y}_{L}} \left(1 + \hat{e}_{B}\right) + \frac{1}{R} \frac{\overline{b}^{left}}{\overline{y}_{L}}\right)}{1 + e_{B} - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right) \frac{\overline{b}^{rec}}{\overline{y}_{L}} \left(1 + \hat{e}_{B}\right)}$$
(1)

- 1. Social discounting with generational discount rate $\Delta \leq 1$
 - lacktriangle With balanced budget and open economy: replace R by ΔR
 - With government debt and
 - open economy: ss exists iff $\Delta R = 1$ ("modified golden rule")
 - closed economy: replace $\Delta R = 1$ (proof uses endogenous capital stock)
- 2. Growth
 - with G > 1 labor augmenting growth: replace R by R/G
 - with social discounting: replace ΔR by $\Delta RG^{-\gamma}$
 - in closed economy: modified golden rule is $\Delta RG^{-\gamma}=1$

MODEL: the optimal inheritance tax nests special cases

$$\tau_{B} = \frac{1 - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right) \left(\frac{\overline{b}^{rec}}{\overline{y}_{L}}(1 + \hat{e}_{B}) + \frac{1}{R}\frac{\overline{b}^{left}}{\overline{y}_{L}}\right)}{1 + e_{B} - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right)\frac{\overline{b}^{rec}}{\overline{y}_{L}}(1 + \hat{e}_{B})}$$
(1)

- 3. "Meritocratic Rawlsian" redistributive preferences
 - bequest receivers $g_{ti}=0$; zero-receivers $g_{ti}=g>0 \quad (\Rightarrow \overline{b}^{rec}=0)$
 - \overline{y}_{I} , \overline{b}^{left} : use ratios of zero-receiver average to population average
- 4. Accidental bequests or wealth lovers
 - ▶ Define $V(c, l, b, \underline{b})$ and $\nu_{ti} = R(1 \tau_{Bt+1})V_{\underline{b}}^{ti}/V_{c}^{ti}$
 - Replace \overline{b}^{left} by $\nu \overline{b}^{left}$

MODEL: benchmark calibration

▶ PS use 2010 French and US hh data to calibrate tax formula (2)

$$\tau_{B} = \frac{1 - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right) \left(\frac{\overline{b}^{rec}}{\overline{y}_{L}}(1 + \hat{e}_{B}) + \frac{\nu}{R/G}\frac{\overline{b}^{left}}{\overline{y}_{L}}\right)}{1 + e_{B} - \left(1 - \frac{e_{L}\tau_{L}}{1 - \tau_{L}}\right)\frac{\overline{b}^{rec}}{\overline{y}_{L}}(1 + \hat{e}_{B})}$$
(2)

- Parameters
 - $e_B = \hat{e}_B = e_L = 0.2$
 - ▶ $\tau_L = 30\%$
 - $\nu = 1$
 - $R/G = e^{(r-g)H} = 1.82$
 - ▶ r g = 2%
 - ightharpoonup H = 30 years with H: generation length
 - (WP: "generational rate of return" is $R = e^{rH}$)
- ▶ From datasets: distributional parameters $\overline{b}^{rec}, \overline{b}^{left}, \overline{y}_L$
 - ightharpoonup uniform g_{ti} on percentiles of bequests received distribution
 - ▶ data from individuals age ≥ 70

BENCHMARK CALIBRATION: results

- Why is τ_B relatively stable up to the 70% percentile?
 - ▶ this group receives and leaves almost no bequests
 - but has close to average (labor) earnings
 - ⇒ large inheritance tax lowers labor tax burden

BENCHMARK CALIBRATION: sensitivity

TABLE I

OPTIMAL INHERITANCE TAX RATE TR CALIBRATIONS^a

	Elasticity $e_B = 0$ (Low-End Estimate)		Elasticity $e_B = 0.2$ (Middle-End Estimate)		Elasticity $e_B = 0.5$ (High-End Estimate)		Elasticity $e_B = 1$ (Extreme Estimate)	
	France	U.S.	France	U.S.	France	U.S.	France	U.S.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Basic Specification: Optimal Tax for Zero Received	ers (Botton	150%), $r - g$	g = 2% (R/G)	$\tilde{s} = 1.82$, ν	$= 70\%$, $e_L =$	0.2, No Exe	mption (Line	ar Tax τ_B)
P0–50, $r - g = 2\%$, $\nu = 70\%$, $e_L = 0.2$	76%	70%	63%	59%	50%	47%	38%	35%
1. Optimal Linear Tax Rate for Other Groups by Percentile of Bequests Received								
P50-70	75%	70%	62%	59%	48%	47 %	35%	35%
P70-90	45%	60%	31%	46%	16%	31%	2%	17%
P90-95	-283%	-43%	-330%	-84%	-376%	-126%	-423%	-167%
2. Sensitivity to Capitalization Factor $R/G = e^{(r-g)}$	Н							
r - g = 0% ($R/G = 1$) or dynamic efficiency	56%	46%	46%	38%	37%	31%	28%	23%
$r - g = 3\% \ (R/G = 2.46)$	82%	78%	68%	65%	55%	52%	41%	39%
 Sensitivity to Bequests Motives ν 								
$\nu = 1 \ (100\% \text{ bequest motives})$	65%	58%	54%	48%	43%	39%	33%	29%
$\nu = 0$ (no bequest motives)	100%	100%	83%	83%	67%	67%	50%	50%
 Sensitivity to Labor Income Elasticity e₁ 								
$e_L = 0$	73%	68%	61%	56%	49%	45%	37%	34%
$e_L = 0.5$	79%	75%	66%	62%	53%	50%	40%	37%
5. Optimal Linear Tax Rate in Rentier Society (Fra	nce 1872-1	937) for Zei	ro Receivers	(Bottom 80	%) With bleft	= 25% and	$\tau_{I} = 15\%$	
$P0-80, r-g=2\%, \nu=70\%, e_L=0.2$	90%		75%		60%		45%	
6. Optimal Top Tax Rate Above Positive Exemptio	n Amount f	or Zero Rec	ceivers (Botto	om 50%)				
Exemption amount: 500,000	88%	73%	65%	58%	46%	44%	32%	31%
Exemption amount: 1,000,000	92%	73%	66%	57%	46%	43%	30%	31%

^aThis table presents simulations of the optimal inheritance tax rate τ_B using formula (17) from the main text for France and the United States and various parameter values. In formula (17), we use $\tau_L = 30\%$ (labor income tax rate), except in Panel 5. Parameters p^{peccived} , p^{left} , y_L are obtained from the survey data (SCF 2010 for the U.S., Enquête Patrimoine 2010 for France, and Piketty, Postel-Vinnay, and Rosenthal (2011) for panel 5.

- Even for $e_B = 1$ tax stays at 35% for low receivers
- ▶ Same for giving zero welfare weight to high receivers
- ▶ (There is no exploration of τ_L)

A REMINDER: historical top inheritance tax rates

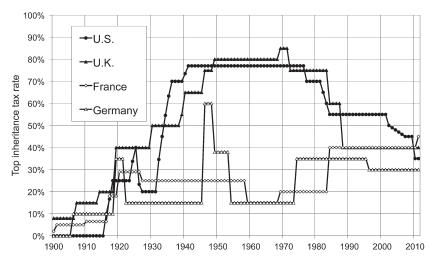


FIGURE 3.—Observed top inheritance tax rates 1900–2011.

SOME TAKE-AWAYS

- 1. There is no one-size-fits-all optimal inheritance tax
 - subsidy benefits top bequest receivers, tax bottom receivers
 - current inheritance tax rates reflect top receivers' preferences

2. A strong result

"(...) dynamic efficiency considerations (i.e. optimal capital accumulation) are conceptually orthogonal to cross-sectional redistribution considerations. (...) there are distributional reasons pushing for inheritance taxation, as well as distortionary effects pushing in the other direction, resulting in an equity-efficiency trade-off that is largely independent from aggregate capital accumulation issues" (p. 1862)

- lacktriangledown $au_B>0$ distorts individual not aggregate intertemporal margin
- equity-efficiency tradeoff is due to cross-sectional elasticities
- 3. Atkinson-Stiglitz collapses b/c heterogeneity is two-dimensional

EARLIER FINDINGS: Farhi and Werning 2010

- ▶ FW 2010 features two generation dynasties where
 - parents receive no bequests, work and consume: $U^{i}(u(c,b),I)$ weakly separable, with u homogeneous of degree 1
 - children receive bequests, do not work but consume
 - positive welfare weight on children: optimal bequest tax < 0</p>
- ▶ PS claim to nest FW 2010 by assuming parent-children pairs ▶ with u homogeneous of degree 1: $\overline{b}^{left} = \overline{y}_L$

 - $ightharpoonup au_B$, au_L have same effect on labor supply: shifting implies $e_L = 0$
 - ▶ assume $\Delta R = 1$ ("dynamic efficiency")
 - welfare weight only on parents: $\overline{b}^{rec} = 0$ $(1) \Rightarrow \tau_B = 0$ welfare weight also on children: $\overline{b}^{rec} > 0$ $(1) \Rightarrow \tau_B < 0$
- A critical feature of FW 2010
 - inequality is one-dimensional
 - parent ability maps child consumption
 - no generation receives and leaves bequest
 - ⇒ no role for inheritance taxation for redistributive purposes

EARLIER FINDINGS: Chamley-Judd, 1985/86

- dynastic utility: most ss equilibrium results carry through
- optimal tax formula almost identical (discount stream of \overline{b}^{rec})
- ▶ BUT: $e_B = \infty$ when stochastic shocks vanish
- lacktriangle optimal $au_B=0$ even with all welfare weight on zero receivers

CONCLUSION - AND SOME THOUGHTS

- optimal inheritance tax is positive even with labor taxes
- ▶ inheritance taxation suffers from an equity-efficiency trade-off
- dynamic efficiency issues are orthogonal to inheritance taxation
- preference for redistribution (wealth equality) governs size of tax
- How general is the result with capitalized bequests?
 Put differently: Are capital and bequests (always) the same?
- 2. How much does the ergodicity assumption restrict preferences? PS do not discuss it so this remains opaque (at least to me)
- 3. What if positive real-world taxes are due to time-inconsistency? PS consider full commitment and so miss out on this aspect