The optimum quantity of debt

S. Rao Aiyagari and Ellen McGrattan

JME 1998

Discussion by Johannes Fleck

March 16, 2016

MOTIVATION - research question

What is the welfare maximing level of public debt?

- Earlier studies used deterministic representative agent models
- ► They arrived at two main results:
 - 1. public debt is welfare improving only if taxes are costly
 - 2. optimal level either indeterminate or set by initial conditions
- ▶ In AM's model, public debt introduces tradeoffs:
 - + enhances household (hh) consumption smoothing
 - requires costly taxation
 - crowds out productive capital and increases interest rate

MODEL - environment

- ▶ AM present two models based on Aiyagari [1994, 1995]:
 - no aggregate but individual risk (stochastic labor productivity)
 - perfectly competitive firms employ capital and labor
 - market incompleteness: risk free asset, borrowing constraints
 - precautionary savings as equilibrium outcome

1. Reduced model: Aiyagari with

- growth
- government debt
- exogenous and wasteful government consumption
- lump sum taxes
- exogenous labor supply
 - \rightarrow taxation has no insurance and incentive effects

2. Benchmark model: Reduced model with

- proportional income tax
- endogenous labor supply
 - \rightarrow will be adapted to US to study welfare effects of public debt

REDUCED MODEL - lump sum tax, exogenous labor supply

- Technology:
 - stochastic labor producvitity e_t ; normalized $E(e_t) = 1$
 - ▶ labor augmenting technological progress: $z_t = z(1+g)^t$
 - growth adjustment: $Y_t = F(K_t, z_t N_t)$
 - lacktriangle capital depreciates at rate δ
- Households:

$$\max_{c_t, a_{t+1}} E \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\nu}}{1-\nu} \right]$$
s.t.
$$c_t + a_{t+1} \le (1+r)a_t + w_t e_t - T_t$$

$$c_t \ge 0; a_t \ge 0; a_0, e_0 \text{ given}$$

- ▶ Government budget: $G_t + rB_t = B_{t+1} B_t + T_t$
- ▶ Asset market: $A_t = K_t + B_t$ (A_t : per capita assets)

REDUCED MODEL - in stationary steady state

- Along balanced growth path:
 - r constant
 - \triangleright Y, K, T, B, A (in per capita terms) and w grow at g
 - ▶ lower case/wiggled letters denote variables divided by Y
- ► Households:

$$\max_{\tilde{c}_t, \tilde{a}_{t+1}} E \left[(Y_0)^{1-\nu} \sum_{t=0}^{\infty} \left[\beta (1+g)^{1-\nu} \right]^t \frac{\tilde{c}_t^{1-\nu}}{1-\nu} \right]$$

s.t.

$$\begin{split} &\tilde{c}_t + (1+g)\tilde{a}_{t+1} \leq (1+r)\tilde{a}_t + \tilde{w}_t e_t - \tau \ &\tilde{c}_t \geq 0; \, \tilde{a}_t \geq 0; \, \, \tilde{a}_0, e_0, \, Y_0 \, \, \text{given} \end{split}$$

- Government budget: $\gamma + (r g)b = \tau$ $(\gamma = G_t/Y_t)$
- Asset market: $\overline{a} = k + b$ $(\overline{a} = A_t/Y_t)$

REDUCED MODEL - CE in stationary steady state

- ▶ In this environment, a competitive equilibrium is a set of
 - ▶ hh policy functions $\mathscr{A}'(a, e)$ and $\mathscr{C}(a, e)$
 - ▶ factor inputs *L* and *K*
 - factor prices w and r
 - government debt B
 - ▶ taxes *T*

such that

- the equilibrium distribution of hhs over the state space $\lambda(a,e)$ associated with $\mathscr{A}'(a,e)$ and $\pi(e'|e)$ is stationary
- given r, w, T: $\mathscr{A}', \mathscr{C}$ maximize the hh problem (s.t. constraints)
- ightharpoonup given r, w: firms choose K and L so they get paid their MPs
- hh savings supply equals demand by firms and government
- hh labor supply equals demand by firms
- government budget is satisfied
- goods market clears

REDUCED MODEL - interest rate determination

Fig. 1. Interest rate determination.

- Note: $\lambda \equiv \frac{(1+g)^{\nu}}{\beta} 1$ (CM asset demand)
- Asset demand:
 - \mathscr{A}' gives stationary distribution of assets, π of shocks
 - integrate to get $\overline{\alpha}(r; \gamma, b, g)$
- ▶ Asset supply: $\kappa(r) + b$ (k is function of r via MPK)

REDUCED MODEL - the effect of increasing public debt

- ▶ Relative to CM: interest rate lower and capital stock higher
 ⇒ government debt is not neutral and has two effects
- ► To see them:
 - define net capital holdings as: $a_t^* = \tilde{a}_t b$
 - substitute government bc into hh bc: $\tilde{c}_t + (1+g)\tilde{a}_{t+1}^* \leq (1+r)\tilde{a}_t^* + \omega(r)e_t \gamma$
 - the new budget constraint is: $\tilde{a}_t^* \geq -b$
 - the new the asset demand is: $\overline{\alpha}^*(r; \gamma, b, g) \equiv \overline{\alpha}(r; \gamma, b, g) b$
- As debt increases:
 - 1. **borrowing limit relaxes: enhances consumption smoothing** (in addition to saving, hh can borrow to buffer shocks)
 - 2. the interest rate rises and capital gets crowded out (smaller capital stock lowers wage and consumption)

REDUCED MODEL - welfare

- What is the welfare effect of an increase in public debt?
 - + higher return on assets:
 - 1. consumption smoothing via savings becomes less costly
 - 2. and more effective (approach CM equilibrium)
 - requires increase in lump sum taxation:
 - 1. higher relative burden for households poor in asset and income
 - 2. exacerbates relative variability of after-tax earnings
 - increase in debt crowds out capital (wages, consumption fall)
- AM estimate net utilitarian welfare effect in benchmark model

$$\Omega = \iint V(a,e) dH(a,e)$$

V: optimal value function

H: steady state distribution of assets and productivities

 $\boldsymbol{\Omega}$ expresses welfare changes in percentage of consumption

BENCHMARK MODEL - in stationary steady state

Households:

$$\max_{\tilde{c}_t, l_t, \tilde{a}_{t+1}} E\left[(Y_0)^{\eta(1-\mu)} \sum_{t=0}^{\infty} \left[\beta (1+g)^{\eta(1-\mu)} \right]^t \frac{(\tilde{c}_t^{\eta} l_t^{1-\eta})^{1-\mu}}{1-\mu} \right]$$

s.t.

$$\tilde{c}_t + (1+g)\tilde{a}_{t+1} \le (1+(1-\tau_y)r)\tilde{a}_t + (1-\tau_y)w_te_t(1-l_t) + \chi$$

 $\tilde{c}_t \ge 0$; $\tilde{a}_t \ge 0$; $1 \ge l_t \ge 0$; \tilde{a}_0, e_0, Y_0 given

- Government: $\gamma + \chi + ((1 \tau_y)r g)b = \tau_y(1 \delta k)$
- ▶ Labor Market: $\overline{\varphi}(r, N; \gamma, b, g, \chi) = N = E[e_t(1 I_t)]$
- Asset market: $\overline{\alpha}(r, N; \gamma, b, g, \chi) = k + b$
- \Rightarrow CE is characterized by r^* and N^*

BENCHMARK MODEL - parametric specification

- ▶ Production function: Cobb Douglas (with capital share θ)
- Labor productivity process:
 - ▶ assumed to be AR(1)
 - approximated as seven state Markov Chain, Tauchen [1986]
 - from Aiyagari [1994]: $\rho = 0.6$, $\sigma = 0.3$
- Government policies and parameters:
 - averages of US postwar data:
 - $\gamma = 21.7\%$, $\chi = 8.2\%$, b = 66% (of GDP)
 - g = 1.85%, $\delta = 0.075$, $\theta = 0.3$
 - arbitrary: $\mu = 1.5$
 - match data: $\beta = 0.991$ (align model to empirical interest rate)
 - **b** back out: $\eta = 0.328$ using elasticity of the labor supply of 2%
- $\rho, \sigma, \mu, \beta, \eta$ determine precautionary savings motive (\rightarrow govern welfare optimizing amount of debt)

BENCHMARK MODEL - results

Fig. 2. Welfare gain, interest rates, tax rate, and aggregate hours versus debt/GDP ratio (x-axis) for the benchmark economy.

- ► Tiny welfare change in debt: positive almost offsets negative effect
- ▶ Reduced model: optimal debt is 140%; welfare loss still small

BENCHMARK MODEL - vary parameters to test robustness

Note: AM adjust β simultaneously in robustness tests 1-3

- ▶ before-tax interest rate and debt remain at 4.5% and 66%
- 1. Decrease ρ (σ) \rightarrow optimum amount of public debt is lower
 - reduces asset demand
 - ★ Model: optimal debt is 50% (20%); welfare loss negligible
- 2. Increase $\mu \rightarrow$ effect ambiguous
 - ▶ hh more risk averse: wants to smooth more, saves more
 - hh has lower effective discount rate: saves less
 - ⋆ Model: in/decrease lowers optimal debt; welfare loss negligible
- 3. Increase η to target labor elasticity of 1% o effect ambiguous
 - if $\mu > 1$: Larger η lowers effective discount rate: hh saves less
 - ightharpoonup increasing η makes labor less elastic so tax less distortionary
 - * Model: optimal debt is lower; again small welfare loss
- 4. Adjust β alone to target before-tax interest rate of 6%
 - ★ Model: optimal debt -50%; welfare gain 0.48% (of consumption)

CONCLUSION

- AM introduce public debt into an Aiyagari model where it
 - relaxes household borrowing constraints
 - reduces incentives to invest in productive capital and to work
- ▶ The model suggests US debt/GDP (66%) is welfare optimal
- ▶ This finding is robust to parametric changes in
 - exposure of households to uninsurable labor income risk
 - household preferences (risk aversion, patience, desire to work)